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Abstract
The coupled KP (cKP) equation possesses N-soliton solutions with many
more degrees of freedom than the solitons for the usual KP equation have.
In comparison, cKP solutions can therefore be expected to model far more
complex interactions than their KP counterparts. In this paper we present some
typical solutions for the cKP system (and for some of its reductions: a complex
coupled KdV equation and a coupled Boussinesq equation) and we analyse
their interaction and asymptotic properties.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

The coupled Kadomtsev–Petviashvili (cKP) equation was first proposed as the soliton system
which arises from coupling the Kadomtsev–Petviashvili (KP) to the Davey–Stewartson
equation [1]: (

D4
x − 4DxDt + 3D2

y

)
τ · τ = 24σ̂σ (1)

(
D3

x + 2Dt − 3DxDy

)
σ̂ · τ = 0 (2)

(
D3

x + 2Dt + 3DxDy

)
σ · τ = 0. (3)

The above equations are written in terms of the (Hirota) bilinear operators Dx,Dy and Dt ,
which can be defined through

Dk
t D

m
y Dn

xf · g =
(

∂

∂t
− ∂

∂t ′

)k (
∂

∂y
− ∂

∂y ′

)m (
∂

∂x
− ∂

∂x ′

)n

f (x, y, t)g(x ′, y ′, t ′)∣∣∣∣∣∣∣∣∣
x′=x

y′=y

t ′=t

.

(4)
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Equations (1)–(3) can be transformed into the following coupled nonlinear partial differential
equations:

(4ut − 6uux − uxxx)x − 3uyy + 24(vv̂)xx = 0 (5)

2vt + 3uvx + vxxx + 3

(
vxy + v

∫ x

uy dx

)
= 0 (6)

2v̂t + 3uv̂x + v̂xxx − 3

(
v̂xy + v̂

∫ x

uy dx

)
= 0 (7)

by means of the dependent variable transformations:

u = 2(log τ )xx (8)

v = σ/τ v̂ = σ̂ /τ. (9)

The cKP equation has N-soliton solutions which can be expressed in terms of Pfaffians
[2]. Furthermore, it is known that the cKP equation is actually part of a hierarchy of integrable
equations—the bilinear identity of which was first derived in [3]—and that the functions τ, σ

and σ̂ appearing in the system (1)–(3) can therefore be regarded as genuine tau functions in
the sense of Sato theory [4, 5]. Although after these initial discoveries this integrable system
lay dormant for nearly a decade, recently there has been a renewed interest not only in the
cKP equation itself but also in its related hierarchy and possible discretizations thereof [6–8].
Special interest was found in the algebraic background of this hierarchy and in its possible
applications to the theory of random matrices [9, 10].

Considering that in this respect the understanding of the cKP equation and its properties has
considerably widened, it is striking that no discussion of its solutions (or of their characteristics)
seems to exist in the literature. We would like to argue, however, that such a discussion is
more than worthwhile (besides being long overdue) as it allows one to uncover a host of
peculiar solitonic interactions. For it is immediately clear that as a consequence of their
Pfaffian origin, the N-soliton solutions of the cKP equation are characterized by many more
parameters than would be the case for comparable solutions of the (usual) KP equation.
Consequently, the number of degrees of freedom which can be used to generate various
types of interactions between such solutions is also much larger. Hence the hope to find
solutions which will, qualitatively, behave very differently in comparison to those of the KP
equation.

In this paper we discuss various examples of solutions of the cKP equation—amongst
which are resonant solitons—and we compare their interaction properties with similar solutions
for the KP equation. We shall also discuss solutions of two equations which are obtained from
the cKP equation by simple reductions: one is the so-called complex coupled Korteweg–
deVries (ccKdV) equation [11] and the other can best be described as a coupled Boussinesq
(cB) equation. In section 2, the functional forms of the one- and two-soliton solutions of
the cKP equation are listed and the ccKdV equation and the cB equations are introduced. In
section 3, we discuss the solutions of the ccKdV equation and we show that it possesses
rather peculiar periodic solutions. The solutions of the cB equation are discussed in
section 4, where it will be shown that the cB equation possesses resonant soliton solutions
which exhibit more freedom than those of the good-Boussinesq equation [12]. Finally, in
section 5 we discuss the soliton solutions of the cKP equation itself. We show that the
cKP equation has resonant solitons which—again due to an increased number of degrees of
freedom—allow for more complex interaction than would be possible in the case of the KP
equation [13].
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2. The cKP equation and its reductions

2.1. The soliton solutions of the cKP equation

In the following, pj and qj (j = 1, 2, . . . , 2N) will represent arbitrary parameters which
characterize the behaviour of the solitons; αj , βj (j = 1, 3, . . . , 2N−1) are (equally arbitrary)
parameters which will play the role of so-called phase constants for the individual solitons
(i.e. fixing the relative positions of the solitons). We define the phase functions ξp and the
so-called interaction factors A(pi, pj ; qk, ql) by

ξp := px + p2y + p3t (10)

θ(pj , pk) := ξpj
+ ξpk

(11)

A(pi, pj ; qk, ql) := (pi − pj )(qk − ql)

(pi − qk)(pi − ql)(pj − qk)(pj − ql)
. (12)

For example, the one-soliton solution to the cKP system (5)–(7) can be represented in terms
of the following tau functions:

τ = 1 + α1β1A(p1, p2; q1, q2) eθ(p1,p2)−θ(q1,q2) (13)

σ̂ = α1(p1 − p2) eθ(p1,p2) (14)

σ = β1(q1 − q2) e−θ(q1,q2) (15)

using the dependent variable transformations (8) and (9). However, in the following we would
like to refer to these tau functions themselves as ‘one-soliton’ solutions (and to subsequent
expressions for such tau functions as ‘N-solitons’). We do so, of course, only for the sake of
brevity: what is really meant by this slight abuse of language is that through the dependent
variable transformation (8), the tau function τ gives rise to a one-soliton (or, in general an
N-soliton) solution in the field u (and similarly that the tau functions σ and σ̂ do so for the
fields v and v̂).

Thus we say that the two-soliton solution for the cKP system is given by

τ = 1 + α1β1A(p1, p2; q1, q2) eθ(p1,p2)−θ(q1,q2) + α3β3A(p3, p4; q3, q4) eθ(p3,p4)−θ(q3,q4)

+ α1β3A(p1, p2; q3, q4)e
θ(p1,p2)−θ(q3,q4)+ α3β1A(p3, p4; q1, q2) eθ(p3,p4)−θ(q1,q2)

+ α1β1α3β3

∏
1�i<j�4{(pi − pj)(qi − qj )}∏4

i,j=1(pi − qj )
eθ(p1,p2)+θ(p3,p4)−θ(q1,q2)−θ(q3,q4)

(16)
σ̂ = α1(p1 − p2) eθ(p1,p2) + α2(p3 − p4) eθ(p3,p4)

+ α1α3β1

(q1 − q2)
∏

1�i<j�4(pi − pj )∏
1�i�4, j=1,2(pi − qj )

eθ(p1,p2)+θ(p3,p4)−θ(q1,q2)

+ α1α3β3
(q3 − q4)

∏
1�i<j�4(pi − pj )∏

1�i�4, j=3,4(pi − qj )
eθ(p1,p2)+θ(p3,p4)−θ(q3,q4) (17)

σ = β1(q1 − q2) e−θ(q1,q2) + β2(q3 − q4) e−θ(q3,q4)

+ α1β1β3
(p1 − p2)

∏
1�i<j�4(qi − qj )∏

i=1,2, 1�j�4(pi − qj )
eθ(p1,p2)−θ(q1,q2)−θ(q3,q4)

+ α3β1β3
(p3 − p4)

∏
1�i<j�4(qi − qj )∏

i=3,4, 1�j�4(pi − qj )
eθ(p3,p4)−θ(q1,q2)−θ(q3,q4). (18)
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Although we shall not give its explicit form here, we would like to remark that in general the
N-soliton solution of the cKP equation will depend on 4N parameters and 2N phase constants,
whereas in the case of the KP equation the N-soliton solution only depends on 2N parameters
and N phase constants.

2.2. The complex coupled KdV equation

The complex coupled KdV (ccKdV) equation is obtained from the cKP equation by selecting
y-independent tau functions τ, σ and σ̂ and in addition to this, by requiring σ and σ̂ to be
complex conjugate, i.e. σ̄ = σ̂ . In fact, under this reduction τ itself becomes a real function.
The bilinear form of the ccKdV equation takes the form(

D4
x − 4DxDt

)
τ · τ = 24|σ |2 (19)(

D3
x + 2Dt

)
σ · τ = 0. (20)

By setting u = 2(log τ )xx and v = σ/τ , equations (19) and (20) are turned into the following
coupled partial differential equations:

(4ut − 6uux − uxxx)x + 24(|v|2)xx = 0 (21)

2vt + 3uvx + vxxx = 0. (22)

Note that the well-known coupled KdV equation [14] is obtained from the cKP equation by a
similar restriction to y-independent tau functions but for a different constraint: σ = σ̂ .

2.3. The coupled Boussinesq system

We obtain a new coupled system from the cKP equation by restricting the tau functions to
t-independent ones and by (again) requiring complex conjugacy for the auxiliary tau functions
σ and σ̂ (σ̄ = σ̂ ). As in the previous case, τ will become a real function under this reduction
and we call the resulting system the coupled Boussinesq equation (cB). Note that in order to
realize the constraint σ̄ = σ̂ one needs to transform the independent variable y as y → iy.
The bilinear form of the cB equation then reduces to(

D4
x − 3D2

y

)
τ · τ = 24|σ |2 (23)(

D3
x − 3 iDxDy

)
σ · τ = 0. (24)

Equations (23) and (24) can be transformed into the following coupled partial differential
equations (by setting u = 2(log τ )xx, v = σ/τ ):

(−6uux − uxxx)x + 3uyy + 24(|v|2)xx = 0 (25)

3uvx + vxxx − 3i

(
vxy + v

∫ x

uy dx

)
= 0. (26)

3. Solutions of the ccKdV equation

The N-soliton solution for the ccKdV equation is obtained by imposing the constraints

pj+1 = ipj qj+1 = iqj (27)
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on the parameters in the N-soliton solution of the cKP equation, followed by a series of
specializations of the remaining parameters:

1.

{
pj → pj (1 − i)/2
qj → qj (1 − i)/2

(28)

2.




pj = aj + ibj

qj = −aj + ibj = −p̄j

βj = ᾱj

(29)

where j = 1, 3, . . . , 2N − 1 and aj , bj are real constants. Then, without loss of generality,
we can further simplify the expressions for the solutions by transforming the phase constants
αj in the following way:

−iαjpj → αj . (30)

Here we give the explicit form of the resulting one- and two-soliton solutions, expressed in
terms of the phase functions and interaction factors:

ηj = 2aj

(
x − (

aj
2 − 3bj

2
)
t/2
)

(31)

Aj = 1

2aj
2
(
aj

2 − bj
2
) . (32)

The one-soliton solution takes the form

τ = 1 + |α1|2A1 eη1 (33)

σ̂ = α1 e(a1+ib1)x−(a1+ib1)
3t/2 (34)

and the τ -part of the two-soliton solution is

τ = 1 + |α1|2A1 eη1 + |α3|2A3 eη3 + 2Re{α1ᾱ3(µ + iν) eiϕ} e
1
2 (η1+η3) + |α1|2|α3|2A1A3

×{(a1 − a3)
2 + (b1 − b3)

2}2

{(a1 + a3)2 + (b1 − b3)2}2

×
{(

a1
2 − b1

2 + a3
2 − b3

2
)2

+ (2a1b1 + 2a3b3)
2
}

{(
a1

2 − b1
2 + a3

2 − b3
2
)2

+ (2a1b1 − 2a3b3)2
} × eη1+η3 (35)

ϕ := (b1 − b3)x +
(−3a1

2b1 + b1
3 + 3a3

2b3 − b3
3
) t

2
(36)

where µ and ν are rational expressions of aj and bj (j = 1, 3) defined (respectively) as
the real and imaginary parts of A(p1, p2; q3, q4) under condition (27) and transformations
(28) and (29). For reasons of brevity we do not present the explicit form of the auxiliary tau
function σ .

In general, the N-soliton solution of the ccKdV equation will depend on 2N real parameters
aj , bj and N phase constants αj for j = 1, 3, . . . , 2N − 1. At this point it is important to
note that if one or more of the interaction factors Aj should happen to be negative, the field
u will become divergent. However, such divergences can easily be avoided by requiring that
the parameters satisfy the inequality

aj
2 − bj

2 > 0. (37)



6898 S Isojima et al

For example, choosing the parameters as

bj = ± aj√
3

(j = 1, 3, . . . , 2N − 1) (38)

we obtain a rather interesting solution for the ccKdV equation. In this case the phase functions
ηj appearing in the exponential terms in the N-soliton solution no longer depend on the
variable t, but the solution still has an overall t-dependence in the form of trigonometric
functions multiplying some of the exponential terms (for example, in the case of (35) such
a t-dependence enters through the function ϕ). Hence, one may conclude that these solitons
will be essentially stationary, were it not for possible interactions between them. In particular,
by controlling the phase constants, the solitons can be prepared such that they exhibit periodic
collisions (see figure 1 for such a two-soliton interaction; please note that this figure—as well
as all subsequent plots of actual solutions—depicts the ‘main’ solitonic field u).

We would like to point out that due to the particular structure of the soliton interaction
factors (32), resonant solutions (describing fission or fusion processes of solitons) cannot
exist in the present case. However, we will show that such solutions do exist for the coupled
Boussinesq equation.

4. Solutions of the cB equation

As after the reduction to the cB equation only the independent variables x and y remain, we
choose y as the ‘time’ variable according to which the various solutions evolve (as opposed
to the ‘natural’ variable t in the ccKdV case). The N-soliton solution for the cB equation
is obtained by transforming this time variable y and by specializing the parameters in the
solutions in the following way:

y → iy (39)

pj = aj + ibj (40)

pj+1 = aj +
√

3bj

2
+ i

−√
3aj + bj

2
(41)

qj = −aj + ibj = −p̄j (42)

qj+1 = −aj +
√

3bj

2
+ i

−√
3aj + bj

2
= −p̄j+1 (43)

βj = −ᾱj (44)

where j = 1, 3, . . . , 2N − 1 and aj , bj are real constants. Without loss of generality we can
simplify the explicit forms of the solutions by transforming the phase constants αj as

αj (pj − pj+1) −→ αj . (45)

In the following we shall (again) only give the explicit forms of the one- and two-soliton
solutions. First we introduce

η̂j = (3aj +
√

3bj )x +
(√

3aj
2 − 2ajbj −

√
3bj

2
)

y

=
√

3(
√

3aj + bj )

{
x +

1√
3
(aj −

√
3bj )y

}
(46)
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Figure 1. An example of a periodic soliton solution for the ccKdV equation, (a1, b1, a3, b3) =(
1, 1√

3
, 2

3 , 2
3
√

3

)
. From the top, (α1, α3) = (20, 1), (4, 1), (2, 1) and (1/2, 1).

Âj = 1

2aj(aj +
√

3bj )(
√

3aj + bj )2
. (47)

The one-soliton solution can then be expressed as

τ = 1 + |α1|2Â1 eη̂1 (48)

σ = ᾱ1 e
1
2 η1 ei{

√
3

2 (a1−
√

3b1)x− 1
2 (a1

2+2
√

3a1b1−b1
2)y} (49)
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Figure 2. An example of a periodic soliton solution for the cB equation, (a1, b1, a3, b3) =
( 5

6 , 5
6
√

3
, 1

2 , 1
2
√

3
), (α1, α3) = (1, 1.2).

and the τ -part for the two-soliton solution takes the form

τ = 1 + |α1|2Â1 eη̂1 + |α3|2Â3 eη̂3 + Re{α1ᾱ3(µ̂ + iν̂) eiφ} e
1
2 (η̂1+η̂3)

+ α1|2|α3|2Â1Â3 × (a1/2 +
√

3b1/2 − a3)
2 + (−√

3a1/2 + b1/2 − b3)
2

(a1/2 +
√

3b1/2 + a3)2 + (−√
3a1/2 + b1/2 − b3)2

× (a1 − a3)
2 + (b1 − b3)

2

(a1 + a3)2 + (b1 − b3)2
× (a1 − a3/2 − √

3b3/2)2 + (b1 +
√

3a3/2 − b3/2)2

(b1 +
√

3a3/2 − b3/2)2 + (a1 + a3/2 +
√

3b3/2)2

× (a1/2 +
√

3b1/2 − a3/2 −√
3b3/2)2 + (−√

3a1/2 + b1/2 +
√

3a3/2 − b3/2)2

(−√
3a1/2 + b1/2 +

√
3a3/2 − b3/2)2 + (a1/2 +

√
3b1/2 + a3/2 +

√
3b3/2)2

× eη̂1+η̂3 (50)

φ :=
(

−
√

3

2
a1 +

3

2
b1 +

√
3

2
a3 − 3

2
b3

)
x +

(
1

2
a1

2 +
√

3a1b1 − 1

2
b1

2

− 1

2
a3

2 −
√

3a3b3 +
1

2
b3

2

)
y (51)

where µ̂, ν̂ are rational expressions of the parameters aj and bj (j = 1, 3), respectively,
defined as the real part and the imaginary part of A(p1, p2; q3, q4) after the reduction (40)–
(43). Again, we choose not to present the explicit forms of the auxiliary tau function σ .

The cB N-soliton solution will, in general, depend on 2N real parameters aj , bj and N
phase constants αj (j = 1, 3, . . . , 2N − 1). As was previously remarked for the ccKdV
equation, note that if one or more of the coefficients Âj are negative the corresponding field u
will become divergent. In order to avoid such divergences, we should choose the parameters
such that

aj (aj +
√

3bj ) > 0. (52)

Moreover, if we fix the parameters bj by

bj = aj√
3

(j = 1, 3, . . . , 2N − 1) (53)

the phases of the corresponding N-soliton solutions will no longer depend on the y variable.
The resulting solutions are very similar to those discussed in the case of the ccKdV equation
(see figure 2).
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Figure 3. An example of a resonant solution of the cB equation, under condition (54),
(a1, b1; α1, α3) = (2, 1; 1, 1).
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Figure 4. The regions in which the interaction factors are positive, depending on the specific
condition ((54) or (55)) the parameters satisfy. The two diagonal lines are b1 = ± 1√

3
a1.

The cB equation has also resonant solutions. First, let us consider resonances which are
obtained from two-soliton interactions (see figure 3). In order to achieve a resonance, we
have to choose one set of parameters aj and bj such that they satisfy one of the following
conditions, here expressed on the set of parameters (a3, b3):{

a3 = (a1 − √
3b1)/2

b3 = (
√

3a1 + b1)/2
(54)

or {
a3 = (a1 +

√
3b1)/2

b3 = (−√
3a1 + b1)/2.

(55)

In this case—because of these specific relations—the coefficient of the last term in expression
(50) will vanish and a resonance occurs. Next, in order to avoid possible divergences in the
field u, we need to impose certain restrictions on the parameter space (a1, b1) (see figure 4).
Asymptotic analysis then shows that the solutions obtained in this way describe the interaction
(fusion or fission) of two resonant solitons.
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Here we only present the asymptotic behaviour in the case of (54). If we define ε to be
the sign of K := a1

b1

(
3a1

2 − 5b1
2
)
, the phase functions η′

1, η
′
2, η

′
4 as

η′
1 := x +

1√
3
(a1 −

√
3b1)y (56)

η′
2 := x − 1√

3
(a1 +

√
3b1)y (57)

η′
4 := x +

1

b1

(
a1

2 − b1
2)y (58)

and the function B := 2 Re{α1ᾱ3(µ̂ + iν̂) eiφ} (this function does not affect the asymptotics)
we find the following asymptotic behaviour for τ :

y → +∞ : τ ∼ 1 + Â1 e(3a1+
√

3b1)η
′
1

y → −∞ : τ ∼ 1 + Â3 e(3a1−
√

3b1)η
′
2

y → −ε∞ : τ ∼ 1 +
B

Â3
e
√

3b1η
′
4 +

Â1

Â3
e2

√
3b1η

′
4 .

Note that this resonant solution depends on two parameters a1, b1 which—as mentioned
above—can be chosen freely, within certain bounds in order to avoid divergences in the field u.
This freedom could for example be used to control the amplitude as well as the velocity of
one of the solitons. This is in stark contrast with the case of the good Boussinesq equation for
which there is only one such free parameter [12].

We can also obtain resonant solutions from a three-soliton solution. Obviously, by
imposing conditions (54) or (55) on a three-soliton solution for the cB equation we can
construct a solution where two out of three solitons exhibit mutual resonances, leaving one
‘free’ soliton. It is therefore natural to ask whether or not, by making some left-over terms
vanish in the tau function τ , it would be possible to obtain a ‘multi-resonance’, i.e. a resonant
solution which has three independent phases in, for example, the y → −∞ direction, but only
one phase in the opposite direction y → +∞.

As far as such possible extra ‘vanishing’ terms are concerned, there are essentially three
nontrivial choices (i.e. choices for which the number of solitons is not reduced, as would, for
example, be the case if a1 = a3 = a5, b1 = b3 = b5). These are


a3 = (a1 − √

3b1)/2
b3 = (

√
3a1 + b1)/2

a5 = (a1 +
√

3b1)/2
b5 = (−√

3a1 + b1)/2

(59)




a3 = (a1 − √
3b1)/2

b3 = (
√

3a1 + b1)/2
a5 = (−a1 − √

3b1)/2
b5 = (

√
3a1 − b1)/2

(60)




a3 = (a1 +
√

3b1)/2
b3 = (−√

3a1 + b1)/2

a5 = (−a1 +
√

3b1)/2
b5 = (−√

3a1 − b1)/2.

(61)
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Figure 5. Parameter regions 1 to 6: the diagonal lines depict b1 = ±√
3a1 and b1 = ± 1√

3
a1.

Under condition (59), for example, the tau function τ becomes

τ = 1 + Ã1 eζ1 + Ã2 eζ2 + Ã3 eζ3 + B1 e
1
2 (ζ1+ζ2) + B2 e

1
2 (ζ1+ζ3) + B3 e

1
2 (ζ2+ζ3) + Ã2Ã3C eζ2+ζ3

(62)

ζ1 = (3a1 +
√

3b1)x +
(√

3a1
2 − 2a1b1 −

√
3b1

2
)
y (63)

ζ2 = (3a1 −
√

3b1)x +
(
−

√
3a1

2 − 2a1b1 +
√

3b1
2
)
y (64)

ζ3 = 2
√

3b1x + 4a1b1y (65)

Ã1 = |α1|2
2a1(a1 +

√
3b1)(

√
3a1 + b1)2

(66)

Ã2 = |α3|2
2a1(−

√
3a1 + b1)2(a1 − √

3b1)
(67)

Ã3 = |α5|2
4b1

2(a1 +
√

3b1)(−a1 +
√

3b1)
. (68)

As before, the functions Bj consist of factors which only contain rational expressions of a1, b1

and trigonometric functions (and hence they do not influence the overall asymptotic behaviour
of the solitons). The constant C is a positive rational expression in a1 and b1. First of all,
note that one of the three coefficients Ã1, Ã2, Ã3 is always negative (for all values of the
parameters (a1, b1)) and that, furthermore, it can be shown that in the other two cases as well
(conditions (60) or (61)) τ will always depend on similar coefficients Ã1, Ã2, Ã3. Hence,
a potentially multi-resonant solution u corresponding to such a tau function would always
become divergent, whatever the values of the parameters. Secondly and more importantly,
however, careful analysis of the asymptotic behaviour of the above tau function shows that it
is not really a ‘multi-resonant solution’ after all. In order to see this and as the asymptotic
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behaviour differs for different values of the parameters, we have to distinguish between six
different cases or parameter regions (see figure 5). Hereafter, we omit the explicit coefficients
of the exponential terms in these solutions and instead concentrate on the specific asymptotics
for each of them:
region 1:

y → +∞ : τ ∼
{

eζ3(1 + eζ2)

eζ2(1 + eζ3)

y → −∞ : τ ∼



1 + eζ1

1 + eζ2

1 + e
1
2 (ζ1−ζ3) + eζ1−ζ3

region 2:

y → +∞ : τ ∼
{

eζ3(1 + eζ2)

1 + eζ3

y → −∞ : τ ∼
{

1 + eζ2

1 + e
1
2 (ζ1−ζ2) + eζ1−ζ2

region 3:

y → +∞ : τ ∼
{

1 + eζ3

1 + e
1
2 (ζ1−ζ3) + eζ1−ζ3

y → −∞ : τ ∼
{

1 + eζ2

eζ2(1 + eζ3)

region 4:

y → +∞ : τ ∼



1 + eζ1

1 + eζ3

1 + e
1
2 (ζ1−ζ2) + eζ1−ζ2

y → −∞ : τ ∼
{

eζ3(1 + eζ2)

eζ2(1 + eζ3)

region 5:

y → +∞ : τ ∼
{

1 + e
1
2 (ζ1−ζ2) + eζ1−ζ2

1 + e
1
2 (ζ1−ζ3) + eζ1−ζ3

y → −∞ : τ ∼
{

eζ3(1 + eζ2)

eζ2(1 + eζ3)

region 6:

y → +∞ : τ ∼
{

eζ3(1 + eζ2)

eζ2(1 + eζ3)

y → −∞ : τ ∼
{

1 + e
1
2 (ζ1−ζ2) + eζ1−ζ2

1 + e
1
2 (ζ1−ζ3) + eζ1−ζ3 .

From the above analysis it is clear that it is impossible to obtain a truly multi-resonant soliton
solution. Instead, however, we see an interesting phenomenon appearing in regions 5 and 6,
where completely different pairs of phases (i.e. ‘solitons’) exist in the y → +∞ and y → −∞
directions.
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Figure 6. An example of a resonant solution of the cKP equation, depicted at t = 0. The two
(free) phases were chosen as : x + y + 1

2 t and 2x − y − 2t .
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Figure 7. An example of a resonant solution of the cKP equation: contour plot in the x–y plane.
(p1, p2, p3, p4, q1, q2, q3, q4; α1, α3, β1, β3) = (3, 2, 4/3, 1, 3/2, −1, 1/2, −1; 1, 1, 1, 1).
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Figure 8. An example of a two-soliton solution of the cKP equation: contour plot in the
x–y plane. Note that the ranges in subsequent plots are the same although positions of the
windows vary. (p1, p2, p3, p4, q1, q2, q3, q4) = (3, 3/2,−1/2, −3/2, 2/3, 1/2, −2/3,−4/3),
(α1, α3, β1, β3) = (1, 1, 1, 1).

5. Solutions for the cKP equation

In section 2 we have already presented the explicit forms of the one- and two-soliton solutions
of the cKP equation. Here we should first discuss the conditions one has to impose on
their parameters in order to avoid divergences in the dependent variable u. As before, such
divergences would result from the appearance of at least one negative term in the tau function τ .
A necessary and sufficient condition which allows one to avoid all divergences can (in principle)
be given but it turns out to be very complex and we shall therefore omit it here. We present a
sufficient condition instead: if we choose parameters which satisfy the inequality

q2N � q2N−1 � · · · � q1 < p2N � p2N−1 � · · · � p1 (69)

all coefficients in τ become non-negative and the variable u will always be bounded. Note that
this choice makes all factors in the denominators of the respective coefficients (12) positive
and all factors in the numerators of these coefficients non-negative.

Next, let us consider resonant solutions obtained from two-soliton solutions of the cKP
equation. There exist two different types of such resonant solutions. A first type is obtained
by choosing parameters which satisfy one of the following conditions:

p1 = p2 (70)

p3 = p4 (71)

q1 = q2 (72)

q3 = q4. (73)
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Figure 9. An example of a tetragonal two-soliton solution for the cKP equation: contour
plot in the x–y plane. (p1, p2, p3, p4, q1, q2, q3, q4) = (2, 3/2, 1, 1/2, −1/3, −1/2,−1,−4/3),
(α1, α3, β1, β3) = (1, 1, 1, 1).

As an example we consider the case of (71). If p3 = p4, τ becomes

τ = 1 + α1β1A(p1, p2; q1, q2) eθ(p1,p2)−θ(q1,q2) + α1β3A(p1, p2; q3, q4) eθ(p1,p2)−θ(q3,q4) (74)

and (as expected) it corresponds to a resonant solution which describes the interaction of
the two solitons (see figure 6). Note that in this τ six free parameters (p1, p2, q1, q2, q3, q4)

remain. This means that one has complete control over two of the phases. In comparison, in
the case of the KP equation the resonant solution obtained from a generic two-soliton solution
only has three free parameters (see, e.g. [15] for a survey of results concerning this topic).

Another type of resonant solution can be obtained by choosing parameters which satisfy
one of the following conditions:

p1 = p3 (75)

p1 = p4 (76)

p2 = p3 (77)
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Figure 10. An example of a ‘spider web’-like three-soliton solution for the cKP
equation: contour plot in the x–y plane. (p1, p2, p3, p4, p5, p6) = (2, 3/2, 4/3, 1, 1/2, 1/3),
(q1, q2, q3, q4, q5, q6) = (−1/4,−1/2, −1,−101/100, −6/5, −5/3), (α1, α3, α5, β1, β3, β5) =
(1, 1, 1, 1, 1, 1).

p2 = p4 (78)

q1 = q3 (79)

q1 = q4 (80)

q2 = q3 (81)

q2 = q4. (82)

Let us for example consider case (82) for which the function τ becomes

τ = 1 + α1β1A(p1, p2; q1, q2) eθ(p1,p2)−θ(q1,q2) + α3β3A(p3, p4; q3, q2) eθ(p3,p4)−θ(q3,q2)

+ α1β3A(p1,p2;q3,q2) eθ(p1,p2)−θ(q3,q2) + α3β1A(p3,p4;q1,q2) eθ(p3,p4)−θ(q1,q2).

(83)



On various solutions of the coupled KP equation 6909

Whereas for the KP equation the time evolution of a resonant solution is nothing but a
mere ‘parallel displacement’ of the resonance pattern, solution (83) (see figure 7) exhibits a
time evolution which is far more complex.

The same is true for ordinary soliton interactions. Although the standard KP evolution
only allows for parallel displacement of the soliton interactions patterns, cKP solitons have
considerably more freedom built-in to them. For example in figure 8, the length of the
intermediate wave which is created in the interaction can be seen changing over time.
Furthermore, for a different choice of parameters the interaction states can be organized
so as to form a tetragon (as in the case of figure 9). This specific pattern arises when one
chooses the parameters such that some terms become very small while remaining nonzero,
i.e. such that it is very close to a resonant state. Figure 10 shows the effect of a similar choice
of parameters on a three-soliton solution. We can see hexagons and several more branches
appearing, resulting in a ‘spider web’-like pattern. It is expected that these patterns will
become more and more intricate as the number of solitons increases.
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